新闻 news
您现在的位置:首页 > 新闻 > Google的机器人学会在现实世界中行走

新闻

视频聊天聚会带来欢乐时光,生活在庇护的门后 视频聊天聚会带来欢乐时光,生活在庇护的门后

  人类确实是一群惊人的韧性。 尽管在佛罗里达海滩上举行聚会的偷偷摸摸的人肆意冒着将冠状病毒传...

  • “煤矿里的金丝雀”:西雅图营销技术初创公司Amplero...

      Amplero的前途一片光明。这家西雅图营销技术初创公司以积极的势头进入2020年,并计划将其收入增加近三倍。 但是随后发生了COVID-19疫情,经济陷入停滞。 Amplero的客户渠道突然枯竭。现在,该公司正...

  • 首席执行官表示,随着美国关闭,StockX的业务蓬勃发展

      StockX是一个高速发展的转售市场,连接着运动鞋,街头服装,手袋和其他可收藏物品的买卖双方,其财富随着价值60亿美元的全球运动鞋转售市场一起增长,而后者是更广泛的1000亿美元运动鞋类别的一部分。...

  • Zyl重现旧照片以创建协作故事

      法国初创公司Zyl发布了适用于iOS和Android的移动应用程序的重大更新。该应用程序旨在查找照片库中重要生活事件的被遗忘的回忆。 Zyl会扫描您的照片库,并神奇地找到重要的照片。每天,应用程序都会...

财经

杭州商务局总经济师武长虹:未来5年培育10家独角兽企业 杭州商务局总经济师武长虹:未来5年培育10家独角兽...

【亿邦原创】4月27日消息,在2023中国(杭州)新电商大会开幕式上,杭州市商务局总经济师武长虹发表了题...

  • 伊丽莎白·沃伦(Elizabeth Warren)担任总统,为其20...

      民主党参议员伊丽莎白·沃伦(Elizabeth Warren)可能已经结束了她的2020年总统大选,但用于推动她竞选的技术将继续存在。 她的员工成员宣布,他们将公开公开展示沃伦为成为民主党总统候选人而开发的顶...

  • 看来布兰登·米道(Brandon Middaugh)正领导着$ 1B的...

      今年早些时候,微软提出了一项最雄心勃勃,范围广泛的战略来减少公司运营的碳排放量,从而在企业界引起了轰动。 该计划的一部分是一个10亿美元的基金,该基金将投资于减缓气候变化的技术,特别是针...

  • 英国科技产业组建Code4COVID.org以抗击冠状病毒危机

      由英国基层技术倡议组织组成的联盟已经聚集在一起,以协调支持英国应对冠状病毒的关键技术人员群体。 COVID19技术响应(CTR)旨在协调可用技术人才的供应;处理需要解决的问题以及两者的匹配。到目前为...

商业

视频聊天聚会带来欢乐时光,生活在庇护的门后 视频聊天聚会带来欢乐时光,生活在庇护的门后

  人类确实是一群惊人的韧性。 尽管在佛罗里达海滩上举行聚会的偷偷摸摸的人肆意冒着将冠状病毒传...

  • “煤矿里的金丝雀”:西雅图营销技术初创公司Amplero...

      Amplero的前途一片光明。这家西雅图营销技术初创公司以积极的势头进入2020年,并计划将其收入增加近三倍。 但是随后发生了COVID-19疫情,经济陷入停滞。 Amplero的客户渠道突然枯竭。现在,该公司正...

  • 首席执行官表示,随着美国关闭,StockX的业务蓬勃发展

      StockX是一个高速发展的转售市场,连接着运动鞋,街头服装,手袋和其他可收藏物品的买卖双方,其财富随着价值60亿美元的全球运动鞋转售市场一起增长,而后者是更广泛的1000亿美元运动鞋类别的一部分。...

  • Zyl重现旧照片以创建协作故事

      法国初创公司Zyl发布了适用于iOS和Android的移动应用程序的重大更新。该应用程序旨在查找照片库中重要生活事件的被遗忘的回忆。 Zyl会扫描您的照片库,并神奇地找到重要的照片。每天,应用程序都会...

Google的机器人学会在现实世界中行走

发布时间:2020/03/06 新闻 浏览:729

 
机器人领域向前迈出了一步,紧随其后的又是另一步。最近,一个名为Rainbow Dash的机器人自学了走路。这只四脚机器只需要几个小时就可以学会向前和向后行走,并在此过程中左右旋转。
谷歌,加州大学伯克利分校和佐治亚理工学院的研究人员在ArXiv预印服务器上发表了一篇论文,描述了一种统计AI技术,即深度强化学习,他们用来产生这种成就,这是很重要的,其原因有很多。
大多数强化学习部署都在计算机模拟的环境中进行。但是,Rainbow Dash使用此技术来学习在实际物理环境中行走。
而且,它能够在没有专门的教学机制的情况下做到这一点,例如人工指导或带有标签的培训数据。最终,Rainbow Dash成功地在多个表面上行走,包括柔软的泡沫床垫和带有明显凹口的门垫。
机器人使用的深度强化学习技术包括一种机器学习,其中代理与环境交互以通过反复试验来学习。大多数强化学习用例都涉及计算机游戏,其中数字特工学习如何玩赢。
这种形式的机器学习与传统的有监督或无监督学习明显不同,在传统的有监督或无监督学习中,机器学习模型需要标记的训练数据来学习。深度强化学习将强化学习方法与深度学习相结合,传统的机器学习的规模随着强大的计算能力而大大扩展。
尽管研究团队将Rainbow Dash的学习能力归功于自己,但人为干预仍在实现该目标方面发挥了重要作用。研究人员必须创建边界,机器人可以在该边界内学习走路,以防止机器人离开该区域。
他们还必须设计特定的算法来防止机器人摔倒,其中一些算法集中在限制机器人的运动上。为了防止诸如坠落损坏之类的事故,通常在数字环境中进行机器人强化学习,然后再将算法转移到物理机器人上以保持其安全性。
在研究人员最初弄清楚如何让机器人在物理环境(而不是虚拟环境)中学习之后,Rainbow Dash取得了胜利。
斯坦福大学与Google无关的助理教授切尔西·芬恩(Chelsea Finn)表示,“将人员从[学习]过程中撤离确实很困难。通过允许机器人自主学习,机器人将更接近于能够在现实世界中学习我们的生活。”